A Finitary Analogue of the Downward Löwenheim-Skolem Property

نویسنده

  • Abhisekh Sankaran
چکیده

We present a model-theoretic property of finite structures, that can be seen to be a finitary analogue of the well-studied downward Löwenheim-Skolem property from classical model theory. We call this property the L-equivalent bounded substructure property, denoted L-EBSP, where L is either FO or MSO. Intuitively, L-EBSP states that a large finite structure contains a small “logically similar” substructure, where logical similarity means indistinguishability with respect to sentences of L having a given quantifier nesting depth. It turns out that this simply stated property is enjoyed by a variety of classes of interest in computer science: examples include regular languages of words, trees (unordered, ordered or ranked) and nested words, and various classes of graphs, such as cographs, graph classes of bounded tree-depth, those of bounded shrub-depth and n-partite cographs. Further, L-EBSP remains preserved in the classes generated from the above by operations that are implementable using quantifier-free translation schemes. All of the aforementioned classes admit natural tree representations for their structures. We use this fact to show that the small and logically similar substructure of a large structure in any of these classes, can be computed in time linear in the size of the tree representation of the structure, giving linear time fixed parameter tractable (f.p.t.) algorithms for checking L-definable properties of the large structure. We conclude by presenting a strengthening of L-EBSP, that asserts “logical self-similarity at all scales” for a suitable notion of scale. We call this the logical fractal property and show that most of the classes mentioned above are indeed, logical fractals. 1998 ACM Subject Classification F.4.1 Model theory, F.4.3 Formal Languages, G.2.2 Graph theory

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Downward Löwenheim-Skolem Theorem and interpolation in logics with constructors

The present paper describes a method for proving Downward Löwenheim-Skolem Theorem within an arbitrary institution satisfying certain logic properties. In order to demonstrate the applicability of the present approach, the abstract results are instantiated to many-sorted first-order logic and preorder algebra. In addition to the first technique for proving Downward Löwenheim-Skolem Theorem, ano...

متن کامل

Easy Proofs of Löwenheim-Skolem Theorems by Means of Evaluation Games

We propose a proof of the downward Löwenheim-Skolem that relies on strategies deriving from evaluation games instead of the Skolem normal forms. This proof is simpler, and easily understood by the students, although it requires, when defining the semantics of first-order logic to introduce first a few notions inherited from game theory such as the one of an evaluation game. 1998 ACM Subject Cla...

متن کامل

A note on extensions of infinitary logic

We show that a strong form of the so called Lindström’s Theorem [4] fails to generalize to extensions of Lκω and Lκκ: For weakly compact κ there is no strongest extension of Lκω with the (κ, κ)compactness property and the Löwenheim-Skolem theorem down to κ. With an additional set-theoretic assumption, there is no strongest extension of Lκκ with the (κ, κ)-compactness property and the LöwenheimS...

متن کامل

Lecture 4: Categoricity implies Completeness

In first order logic, the theory of a structure is a well-defined object; here such a theory is not so clearly specified. An infinite conjunction of first order sentences behaves very much like a single sentence; in particular it satisfies both the upward and downward Löwenheim Skolem theorems. In contrast, the conjunction of all Lω1,ω true in an uncountable model may not have a countable model...

متن کامل

Löwenheim-Skolem theorems for non-classical first-order algebraizable logics

This paper is a contribution to the model theory of non-classical firstorder predicate logics. In a wide framework of first-order systems based on algebraizable logics, we study several notions of homomorphisms between models and find suitable definitions of elementary homomorphism, elementary substructure and elementary equivalence. Then we obtain (downward and upward) Löwenheim–Skolem theorem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017